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Abstract

This paper is concerned with free vibration of elastic structures made up of cellular material. A network
of cells in a plane is considered. Cell walls are modelled as beams. The problem of calculating the first few
natural frequencies and the corresponding mode shapes is addressed. An approximate method based on the
assumption that cellular solids behave as a continuum for low-frequency dynamics is presented. A direct
application of the assumed modes method incorporating continuum modes as basis leads to difficulties. The
source of this difficulty is identified. A method that uses inverse power iterations is proposed to pre-
condition the assumed modes appropriately. The proposed method of using continuum modes as basis for
model order reduction leads to substantial computational saving while maintaining good accuracy. Two
examples are given to illustrate the proposed procedure of using the continuum modes in conjunction with
pre-conditioning.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Cellular materials are increasingly being used for structural applications. Wood, cork and bone
are common examples of solids that contain substantial porosity. At the mesoscopic scales of
length the material exhibits a complex network of elastic elements. Many artificial materials share
the same generic features at this level: polymeric, ceramic and metallic foams and honeycombs are
perhaps industrially most important. Often porous metal and honeycombs are used as the core
material in sandwich constructions. These constructions exhibit high stiffness to weight ratio—a
see front matter r 2004 Elsevier Ltd. All rights reserved.
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very useful property for aeronautical applications. Packaging, thermal insulation, acoustic
damping etc. are other common applications.
When such a material is used for constructing structures that have dimensions much larger than

typical cell dimensions, the material can be conceived to be homogeneous with some effective
elastic properties. These effective properties primarily depend on the cell-size, its distribution, the
cell wall material and the topology of the cells. The existing literature on the mechanics of cellular
materials is mainly devoted to the understanding of the elastic behaviour of the cellular solids
under static loads. Analytical and experimental methods have been used. The main aim of these
studies was to calculate the effective mechanical properties and their dependence on the effective
density and the topology of the microstructure. Gibson et al. [1] were the first to give a
comprehensive account of the in-plane elastic and the plastic behaviour of the cellular solids made
of hexagonal cells. They used the unit cell approach and determined the elastic constants for
lattices with hexagons when bending deformations of the cell walls are dominant.
Warren and Kraynik [2] developed expressions for elastic constants of regular hexagonal

honeycombs using kinematic arguments. They included both the axial and the bending
deformations of the cell walls. Gulati [3] evaluated expressions for elastic constants of
honeycombs made of triangular cells using an energy approach. Scarpa et al. [4] studied the
effect of uni-axial in-plane loading on honeycombs made of inverted hexagons using the finite
element method and experiments.
Menges and Knipschild [5] derived expressions for the modulus of elasticity considering

bending and axial deformations of the cell edges. Works of Menges and Knipschild [5] and Ko [6]
identified bending of the cell walls as the dominant mechanism of deformation in foams.
A wide range of mechanical properties e.g. elastic, plastic, buckling, thermal conductivity etc.

have been discussed in the work of Gibson and Ashby [7]. Discussions about the mechanical
behaviour of open and closed cell foams can be found in Gibson’s review [8] on metallic foams.
Christensen [9] surveyed the relationship between the mechanical properties, effective density and
the various cell-shapes for two- and three-dimensional cellular materials. Grenestedt’s work [10]
analysed the various models used to study the mechanics of cellular solids without any
imperfections.
Silva et al. [11] have studied the effect of microstructural variability on the elastic behaviour of

two-dimensional cellular solids using the finite element method. Their results show that, for the
same relative density, the average elastic properties of the irregular and the regular hexagonal
honeycombs are almost the same. They have also studied the effect of directionally oriented
irregularity on the elastic anisotropy for irregular honeycombs. Zhu et al. [12] studied the
dependence of elastic properties on the degree of irregularity of the microstructure. They showed
that the effective elastic and shear modulus can vary by up to 20% from the values of modulii for
regular hexagons of the same relative density.
In another study, Silva et al. [13] studied the effect of the local defects (e.g. removal of cell walls)

in the random microstructure on the bulk compressive failure behaviour. The effects of
imperfections, such as the wavy nature of the cell walls, thickness variation of the cell walls and
missing cells on the elastic and yielding behaviour have been studied by Simone and Gibson [14],
Grenestedt [15] and Chen et al. [16].
For irregular honeycombs or foams, simulation of the real microstructure becomes important.

Hollister and Kikuchi [17] used information from digital images in their finite element simulations
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to study the effect of microstructural morphology of bones. Garboczi and Day [18] developed an
algorithm to calculate the effective elastic properties of random multi-phase materials. They
treated each pixel of the digital image as a linear finite element.
Homogenisation theory has also been applied in the study of the cellular solids to determine the

effective properties. Torquato et al. [19] compared the bounds on effective properties with the
results obtained from the finite element calculations.
Although there are several studies on the statics of cellular materials, the dynamics of this class

of solids does not appear to have received much attention. Wang and Stronge [20] studied elastic
regular hexagonal honeycombs under periodically fluctuating forces using the micropolar theory.
Baker et al. [21] studied the effect of impact and energy absorption of metal honeycombs. To the
best of our knowledge, no work has so far has been reported on the vibration of cellular materials.
Since structures made of these materials are frequently used under dynamic environment, there is
a need to understand the dynamic behaviour. The present study is motivated by this need.
When a structure is made up of small cells, a field description in the spirit of the theory of

elasticity is impractical due to the complexity of the internal geometry. Therefore, in this paper,
the overall structure is modelled as a finite element assembly. The cell walls are modelled as elastic
beams. Since a typical cell is much smaller than the overall dimensions of the structure, several
beam elements are required for detailed description. Supposing that the description is available
either by analytical method or by digital image based techniques, the number of degrees-of-
freedom of the overall structure will then be very large. In this circumstance, the eigenvalue
problem resulting from the free vibration analysis is large—hence computationally expensive.
The main contribution of this paper is in reducing the computational expense for calculations

related to free vibration of a cellular structure. This is achieved in the spirit of model order
reduction with the so-called continuum modes used as the basis. The method preserves all the
structural details via complete mass and stiffness matrices but the resulting full-scale eigensolution
is done away with. This method could be used when one is interested in the low-frequency
dynamics. Low- and high-frequency regions can be best characterised using the wavelength of the
standing waves for a given normal mode. When this wavelength is much greater than typical cell
size, the corresponding natural frequency will be referred to as ‘low frequency’—a band in which
the proposed approximation of this paper is valid. The actual values of the frequency is
unimportant since the validity of the approximation does not depend on this. In this way we will
use the word low frequency and long wavelength synonymously. For high-frequency dynamics, a
piece of cellular solid ceases to behave as a continuum and the proposed method is not suitable in
that case. It is found that a direct model order reduction possesses difficulties. It is then shown in
this paper that this difficulty can be attributed to the presence of small components in the assumed
modes that are associated with exceptionally high frequencies. A method to remove these high-
frequency components from the assumed modes is proposed.
It is not our aim to model a given piece of cellular material in detail. On the contrary, we

assume that such a model is available to us—we focus our attention to the problem of reducing
computational expense while maintaining accuracy. For simplicity, the illustrative examples given
in this paper are two-dimensional—a compromise as far as exactness of modelling is concerned.
The paper is organised as follows. An approximation for low-frequency dynamics of cellular

structures is presented in the next section. It is realised there that a direct application of the
assumed modes method that uses continuum modes is prone to large errors. A method based on
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inverse power iterations is presented in Section 3. Two examples that demonstrate the proposed
method in this paper are given in Section 4. Finally, conclusions are drawn in Section 5.
2. An approximation for cellular structures based on continuum modes

Structures made up of elastic cells are analysed in this paper. The finite element method has
been used to obtain a discrete model. Each cell wall is modelled as a two-node elastic beam. It is
possible to use more elements to represent a cell wall to improve accuracy, however, for low-
frequency dynamics it is not critical. It is assumed that all the cell walls have uniform thickness.
Damping in the cell walls is neglected. Small amplitude vibration is considered—this justifies a
linear analysis. The effect of shear in the cell walls is ignored in the analysis. This is a valid
assumption for studying the first few modes of the overall structure because the deflections at the
cell wall level do not take a very rapidly fluctuating shape.
Euler–Bernoulli beam theory is employed for analysis. Stretching as well as bending

deformations in the beams are included in the model. The global stiffness matrix K and the
global inertia matrixM are assembled in the usual way [22]. Note that K andM incorporate all the
structural details. Let gðtÞ represent the vector of generalised coordinates of the whole structure.
The kinetic energy TðtÞ and the potential energy V ðtÞ are expressed as

TðtÞ ¼ 1
2
_gTM _g; V ðtÞ ¼ 1

2
gTKg: (1)

For a conservative system, Lagrangian L is in the form L ¼ T � V : Applying Hamilton’s
principle, first variational of the integral of the Lagrangian between time interval t1 and t2 is zero,
i.e. d

R t2
t1

Ldt ¼ 0; the set of equations of motion are obtained as

M €g þ Kg ¼ 0: (2)

Looking for synchronous free vibration, the above equation leads to the following algebraic
eigenvalue problem

Kur ¼ lrMur; (3)

where lr is the rth eigenvalue, and ur is the corresponding eigenvector. Square root of the
eigenvalue lr is a natural frequency or of the overall structure. Usually the eigenvalue problem (3)
is of very large size when the structure is modelled realistically.
Porous solids are not homogeneous at the scales of length comparable to the size of a typical

cell. At this level, a piece of cellular material is a complex network of elastic elements. Therefore,
for dynamics that involve short waves, a cellular structure exhibits all the local details at the cell
level and the behaviour has a strong local influence. On the other hand, for dynamics at low
frequency, usually associated with long waves, the behaviour at the bulk level resembles
continuum behaviour with the effective properties of the continuum that depend on the statistical
distribution of elastic members.
A structure made up of cellular material possesses geometrical features at two length scales.

First, the scale of length of the overall structure, say ls; is typically represented by the
characteristic length in a hypothetical solid when the porosity is completely filled. Second, the
scale of length of the porosity or cells, say lc; is assumed to be small, i.e. lc5ls: We also assume
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that we are interested in the dynamics at a length scale much greater than lc which means that the
wavelengths involved are much longer than lc: In these circumstances, we can guess the mode
shape of the overall structure by filling the porosity and treating the structure as a homogeneous
medium at the length scale ls: Since the mode shapes do not strongly depend on the material
properties, it does not matter what properties (in terms of the elastic modulus and density) are
chosen while calculating the guessed mode shape. Once the mode shapes of the hypothetical
medium, to be called continuum modes in future, are calculated, the mode shapes of the cellular
structure are interpreted by mapping the displacement and rotation fields of this hypothetical
porosity filled structure onto the nodes where cell walls join each other.
The last step of interpreting mode shapes of a cellular structure based on those of a continuum

structure requires simple kinematic calculations. In engineering practice, the overall structures are
often made of simpler elements such as plates, beams or shells. In that case, the calculation of the
continuum modes will be greatly simplified. For example, if we have a planar cellular structure
made up of beams at the length scales ls; then we need to consider only the skeleton of beams to
calculate the modes of a structure made of a hypothetical homogeneous medium. The
displacement field at other points can be calculated by using the kinematic relations intrinsic to
the beam theory, i.e. plane sections remain plane and normal to the skeleton axis.
In our numerical implementations, we have restricted ourselves to planar structures with cell

walls modelled as beams. The skeleton at length scales ls is also modelled using beam elements.
These beams have axial degrees of freedom in addition to the transverse displacement and
rotation at each of the two nodes of an element. In a local coordinate system, the transverse
displacement fðxÞ is approximated using the four Hermite cubics. The displacement and rotation
fields within an element are then given by

vb
xðx; yÞ ¼ �y

df
dx

; vyðxÞ ¼ fðxÞ; yðxÞ ¼
df
dx

; (4)

where vb
xðx; yÞ is the displacement in the axial direction of the element due to bending effects only,

vyðxÞ is the transverse displacement of the neutral axis which is the transverse displacement of all
the points normal to the neutral axis, and yðxÞ is the rotation of the cross-section. The total
displacement field is obtained by superposing the displacement in the axial direction due to
tension–compression effects, i.e.

vxðx; yÞ ¼ vb
xðx; yÞ þ vtensionx ðxÞ: (5)

Note that vtensionx is assumed to be a function of x alone which asserts that this displacement
component is distributed uniformly through the cross-section: an assumption consistent with one-
dimensional rod theories. This component is calculated by interpolating the axial displacement
field from the nodal axial displacements.
There will be a transverse displacement field vtensiony ðxÞ due to Poisson’s ratio effect. However,

we have ignored this part of the displacement field in obtaining the assumed modes for two
reasons: firstly, the contribution to the overall displacement from tension–compression is usually
small since rods are stiff in tension–compression than in bending. Secondly, there is no way to
know the effective Poisson’s ratio of the cellular material at the start of the calculations.
Having obtained the nodal displacements of the elements used to model the skeleton, Eqs. (4)

and (5) enable us to calculate the displacement and rotation fields at any point within the
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structure, as though the structure were made of homogeneous material. We use these kinematic
relations now to map the displacement field vxðxÞ; vyðxÞ; yðxÞ onto the displacements at the joints
of the cell walls in the actual cellular structure, i.e.

fvx; vy; yðxÞg7!qjoints: (6)

The generalised displacement vector at the joints contains displacements in the plane and rotation.
We will denote these components for the complete structure as obtained for the ith mode of the
structure by qi:We assume that the necessary coordinate transformations have been employed so
that qi is expressed in a global coordinate system.
Starting with p number of assumed modes qi; i ¼ 1; 2; . . . ; p we are now in a position to build a

reduced order model of size p 
 p: To achieve this, we express the N-dimensional vector of
generalised co-ordinates q in terms of the assumed modes qi as

q ¼
Xp

i¼1

ciqi: (7)

This expansion can be seen as the following transformation:

q ¼ Tc; (8)

where the N 
 p transformation matrix T is the matrix whose columns are qi; i.e.

T ¼ ½q1jq2j . . . jqp: (9)

The vector c is of length p and contains c1; c2; . . . ; cp in a column.
Rayleigh’s quotient in terms of q as the trial vector is now given by

R ¼
qTKq

qTMq
; (10)

where K andM are the N 
 N stiffness and mass matrices, respectively, of whole structure. Note
that these matrices contain all the detailed information about the geometry, properties and
topology of the network of beams at the cell level.
Substituting the transformation (8) into (10) we have

R ¼
cTTTKTc

cTTTMTc
: (11)

Thus, Rayleigh’s quotient is a ratio with ci; i ¼ 1; 2; . . . ; p as the unknowns. Applying Rayleigh’s
variational principle, the first variation of this quotient must be zero, i.e. dRðc1; c2; . . . ; cpÞ ¼ 0:
This amounts to setting the first derivative of R with respect to each of the unknowns to zero, i.e.

qR

qci

¼ 0; i ¼ 1; 2; . . . ; p: (12)

Since both the numerator and the denominator of R are quadratic forms, application of condition
(12) leads to the following eigenvalue problem

Kc ¼ mMc; (13)
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where K ¼ TTKT and M ¼ TTMT: This eigenproblem is of size p. Assuming that p5N; we
conclude that the reduced order model will save substantial computation since we do not need to
solve the full-scale eigenproblem (3) of size N.
Solution of the eigenvalue problem (13) gives p number of eigenvalues mr; r ¼ 1; 2; . . . ; p and

the corresponding eigenvectors c1; c2; . . . ; cp: The eigenvalues mr are approximations for the exact
eigenvalues lr and the eigenvectors cr contain information about the corresponding mode shapes
qr:Mode shapes of the overall structure are calculated for each cr by substituting the components
of these vectors into the summation (7). As can be seen that the reduced order eigenproblem (13)
affords only p number of modal parameters instead of the complete set of N, but this is the price
that one has to pay for computational economy. Often this will be satisfactory because in many
practical situations, the excitation occurs over a band of frequency and hence one needs to
consider modes only within (and slightly outside) this band.
When only one assumed mode is used in the summation (7), it amounts to substitution of the

assumed mode for the trial vector q in Eq. (10). The accuracy of this approximation depends on
the closeness of the assumed mode to the actual mode. It is a well-known property of Rayleigh’s
quotient that if the trial vector q differs from an eigenvector (say, urÞ by an amount of the order of
a small quantity, say �; then Rayleigh’s quotient for this trial vector differs from the corresponding
eigenvalue by an amount of the order of �2: Thus eigenvalue estimates are more accurate than the
trial vectors used in Rayleigh’s quotient approximation. While using the continuum modes we
find that the assumed modes are indeed very close to the actual modes (the difference, say, being
of the order of �), still the frequencies are poorly predicted by a direct application of Rayleigh’s
approximation. We will look into the approximation more closely in the next section. We will also
propose a method to overcome the difficulty identified.
3. Rayleigh’s variational method and pre-conditioning of the trial modes

We turn to the single mode approximation first. It will be assumed that the trial mode is close to
the actual mode shape. Expanding the trial vector q in terms of the eigenvectors of the original
eigenproblem (3), we have

q ¼ b1u1 þ � � � þ biui þ � � � þ bNuN ; (14)

where N is the size of the original eigenproblem and b1; b2; . . . ; bN are constants. For the ease of
presentation of analysis, we assume that the trial mode resembles the first mode shape u1 and is
corrupted by contribution from a single mode um so that

q ¼ a1u1 þ amum: (15)

Further, assuming that the contribution from the mth mode is small compared to that from the
first mode (the mode whose frequency is being estimated by the approximation), we set a1 ¼ 1 and
am ¼ � with �51: Substituting for q in the expression of R in Eq. (10) we have

R ¼
ðuT1 þ �uTmÞKðu1 þ �umÞ

ðu1 þ �uTmÞMðu1 þ �umÞ
: (16)
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We assume that the eigenvectors ur are mass-normalised, so that the orthogonality relationship
gives uTi Muj ¼ dij and uTi Kuj ¼ lidij ; i; j ¼ 1;m; where dij is the Kronecker-delta. Substituting the
above in Eq. (16), after some algebra we obtain

R ¼
l1 þ �2lm

1þ �2
: (17)

If l1 ¼ oðlmÞ; then R ¼ l1 þ oð�2Þ: However, if lmbl1; then the difference R � l1 can become
very large affecting the approximation adversely. Suppose lm=l1 ¼ Mb1; then R � l1ð1þ �2MÞ;
and therefore, R � l1 � l1�2Maoð�2Þ:
The above analysis is restricted to a single mode approximation. The case of an approximation

involving several continuum modes q1; q2; . . . can be treated similarly. Again for simplicity, we
assume that there are only two modes to be used in the approximation (i.e. p ¼ 2) and that each
mode is corrupted by a small amount whose contribution comes from the mth mode, mb2:
Expressing this mathematically, we have

q1 ¼ u1 þ �um; q2 ¼ u2 þ �um: (18)

Assuming u1; u2; um to be mass normalised, the transformation matrix T as in Eq. (9) takes the
form

T ¼ ½ðu1 þ �umÞjðu2 þ �umÞ: (19)

Substituting this into the expressions following Eq. (13), the 2
 2 matrices are obtained as

K ¼
ðl1 þ �2lmÞ �2lm

�2lm ðl2 þ �2lmÞ

" #
; M ¼

ð1þ �2Þ �2

�2 ð1þ �2Þ

" #
: (20)

The eigenvalues m can be obtained in closed form from the following quadratic equation:

Am2 þ Bmþ C ¼ 0; (21)

where A ¼ ð1þ 2�2Þ; B ¼ �½ð1þ �2Þðl1 þ l2Þ þ 2lm�2 and C ¼ l1l2 þ �2lmðl1 þ l2Þ: Solving this
quadratic we have

m1;2 ¼
½ð1þ �2Þðl1 þ l2Þ þ 2�2lm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �2Þ2ðl1 � l2Þ

2
þ 4�4½l2m � lmðl1 þ l2Þ þ l1l2

q
2ð1þ �2Þ

: (22)

When � is small but lm is large, i.e. when � ! 0 and lmbl24l1 then

m1;2 ¼
l1 þ l2
2

� �
;

l1 þ l2
2

þ �2lm

� �
: (23)

This confirms that the two approximate eigenvalues m1 and m2 do not resemble the actual
eigenvalues l1 and l2 in the circumstances. When we implemented the method outlined in Section
2, we observed that the errors in the estimation of approximate eigenvalues m were often very
large. To understand this further we present the following sensitivity analysis to study the rate of
change of the approximate eigenvalues with respect to change in the parameter �: To do this we
view the eigenproblem (13) as one that depends on the parameter �: In that case, the eigenvalues
have the functional relationship mi ¼ mið�Þ: Fortunately, we can estimate the derivative of an
eigenvalue exactly when an eigenproblem depends on a parameter [23]. The expression for the
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eigenderivative is given in the present context by

qmi

q�
¼

cTi ½qK=q�� miqM=q�ci

cTi Mci

: (24)

Since we know the functional dependences of Kð�Þ andMð�Þ explicitly via Eq. (20), differentiation
leads to

qK
q�

¼ 2�lm1;
qM
q�

¼ 2�1 (25)

where the 2
 2 matrix 1 contains 1’s everywhere. We now divide the above sensitivity relationship
by ðmi=�Þ and define the non-dimensional ratio si as the relative sensitivity for the ith mode to
obtain

si ¼
ðqmi=q�Þ
ðmi=�Þ

¼

2�2
lm

mi

� 1

� �
G

ð1þ �2Þ
; (26)

where

G ¼
cTi 1ci

cTi ci

:

Note that the number G is bounded in the range 0oGo2 since G is a Rayleigh’s quotient
associated with the matrix 1 and since the eigenvalues of 1 are 0 and 2. As � ! 0; both M and K

become diagonal so that ci is either ½0 1
T or ½1 0T: For these vectors, G ¼ 1: Hence for �51

si �
2�2ððlm=miÞ � 1Þ

ð1þ �2Þ
: (27)

As in the previous cases of Eqs. (17) and (23), the smallness of �2 alone does not guarantee
accuracy of the approximation: we require smallness of the term �2lm: Since the approximation
method we have proposed uses the physical reasoning that the overall mode shapes must resemble
those of a continuum, it is very difficult to control the contributions (however small) from higher
modes. The case of cellular structures is a particularly difficult one because it requires building a
very large model meaning that the eigenvalues of the complete structure span a large range, i.e.
l15lN : This increases the chances of contributions coming from the high frequency end of the
spectrum.
Having identified the difficulty, we now propose a way to help the situation by filtering the

components corresponding to high frequencies from the assumed modes qi before they are used
either in Rayleigh’s quotient (as in one mode approximation) or before they are used in the
variational formulation of Eqs. (7)–(13). We propose to remove the high-frequency eigenmodes
from the trial vectors by the use of inverse power iterations. When the power method of
determining the dominant eigenvalue of a matrix is used, the method works by progressively
enriching the iterated vector in favour of the large eigenvalue side of the spectrum. The
contribution from the small eigenvalue side gradually becomes smaller as the iterations proceed.
Since our aim is to determine the lowest few natural frequencies and the corresponding modes, we
need to iterate with the inverse matrix. Fortunately, we do not need to compute the inverse
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explicitly. All we need to do now is to cast the original eigenproblem (3) in the following form:

1

l
Kq ¼ Mq: (28)

The iterations at the rth step become

Kq
ðrÞ
i ¼ Mq

ðr�1Þ
i ; (29)

where the superscript refers to the iteration number. The above set of algebraic equations needs to
be solved for q

ðrÞ
i : The first vector q

ð0Þ
i is the continuum mode presented in Section 2. In our

numerical implementations, we found just one iteration to be sufficient. In spite of extra
calculations involved in solving Eq. (29) and those involved in the mapping of Eq. (6), an overall
saving in the total number of floating point operations was observed in our implementations.
4. Numerical examples and discussions

We now present two numerical implementations of the scheme of using continuum modes for
the calculation of natural frequencies and normal modes for the first few modes. In the first
instance we undertake a cantilever beam (see Fig. 1) made of cellular material. Then we present
calculations for two cellular beams joined at right angle: we will refer to this structure as the L-
beam (see Fig. 7).

4.1. Example 1: cantilever beam

Consider a cantilever beam clamped at the left end made up of cellular material (see Fig. 1). The
network of beams representing cell walls was generated from a Voronoi diagram. The edges of
each Voronoi cell represent cell walls.
Since the generation of these cells required randomly placed nucleation points for the Voronoi

cells, there is a distribution of length of the cell walls. As a result, there is a small fraction of the
total number of cell walls that is represented by short beams. This is undesirable from the point of
view of mechanical modelling since the Euler–Bernoulli beam theory breaks down for very short
beams. Since it is hard to control the length of the cell walls or the relative distance of the
nucleation points with respect to close neighbours, we took an alternative approach of eliminating
exceptionally short cell walls by moving the nodes so that the two ends of a short beam (shorter
than a decided threshold) coalesce to a point. The connectivities with other neighbours for each of
the two merging nodes is left unchanged. The threshold of discarding short beams was kept as the
thickness t to length l ratio equal to 1:3. This ratio may appear as one representing very short
beam, in practice there are very few beams of this t=l ratio. A large majority of cell walls (about
Fig. 1. A cellular beam. The microstructure is composed of irregular cells. Vibration in the plane of the paper is

considered.
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Fig. 2. Histogram of thickness/length (t=l) ratio for the cell walls for the structure shown in Fig. 1. The distribution

indicates that only 10:09% elements have t=l ratio greater than 1=10 with 2.5% elements have t=l ratio greater than 1=5:
Therefore, most of the cell walls (about 90%) have t=l ratio less than 1=10:

Table 1

Geometric and material data for the beam shown in Fig. 1

Geometric data

Length of the model L 600mm

Overall depth in the transverse direction D 50mm

Width perpendicular to the plane of paper Unity

Length of the cell wall material
P

i li 7575.4mm

Thickness of the cell walls t 0.175mm

Number of nodes 1148

Number of elements 1556

Total degrees-of-freedom 3444

Material data

Modulus of elasticity of the cell wall material (aluminium) Es 70GPa

Density of the cell wall material (aluminium) rs 2700kg=m3
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90%) have a t=l ratio of 1:10 or less. A histogram of the distribution of the thickness to length
ratio is plotted in Fig. 2. Note the strong skewness towards the left end of the histogram that
represents thin long beams.
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The geometric and material data of the beam are presented in Table 1. We have taken the
thickness as the same for all the cell walls. The external dimensions of the cellular beam are L and
D in the axial and transverse directions giving an L=D ratio of 12 for the model. The beam has
over 500 cells. The area fraction of the solid is calculated as

r�

rs

¼
t 


P
i li

L 
 D
; (30)

where r� is the effective density of the overall structure. The relative density which is the same as
the area fraction is about 0:044 for the example of Fig. 1.
To simulate the fixed end, all the degrees-of-freedom at the left end of the cellular beam are

fixed after assembling the global stiffness and mass matrices. The continuum modes are obtained
from the finite element analysis of a single fixed-free beam having the same macroscopic
dimensions as the cellular beam. A small size finite element model having twelve elements with
cubic interpolation is used to calculate the continuum modes. Mapping on the lines of Eq. (6) is
achieved using Eqs. (4) and (5). The first ten continuum modes are chosen as the basis modes after
pre-conditioning using Eq. (29). An in-house code was developed in MATLAB [24] for predicting
the natural frequencies and the mode shapes using both the approximate method and the full-
scale model.
Table 2 shows the first ten natural frequencies as calculated by solving the large eigenproblem

(3) and by using the approximation of pre-conditioned continuum modes presented in this paper.
The accuracy of the calculation is quite remarkable. The first nine modes show an error less
than 1%.
Comparing mode shapes quantitatively is not as straightforward as comparing natural

frequencies because of non-uniqueness of eigenmodes up to an arbitrary scaling. MAC (Modal
Assurance Criterion) is frequently used to correlate the experimental mode shapes with those
obtained by the finite element method [25]. In this paper, we use this established method to
Table 2

Comparison between the natural frequencies as calculated from the full model (Eq. (3)) and the approximation based

on pre-conditioned continuum modes for the cellular beam in Fig. 1

Mode no. Natural frequency (Hz) Approximate frequency (Hz) Relative error (%)

1 4.79 4.79 �4:89
 10�7

2 29.40 29.40 �5:51
 10�6

3 80.50 80.50 �4:21
 10�4

4 102.51 102.51 �4:78
 10�4

5 143.82 143.83 �3:96
 10�3

6 213.35 213.41 �2:69
 10�2

7 317.00 317.68 �2:14
 10�1

8 324.64 324.82 �5:77
 10�2

9 393.06 394.01 �2:41
 10�1

10 493.45 526.98 �6:80
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correlate the mode shapes obtained from the proposed approximation with finite element
simulated modes.
The MAC matrix C has the entries given by [25]

Cij ¼
ðjuTi qjjÞ

2

ðkuikÞ
2
ðkqjkÞ

2
: (31)

The diagonal terms of the matrix represent the correlation between two eigenvectors associated
with the same mode, whereas the off-diagonal terms reflect the correlation between the cross-
eigenvectors. For best correlation, the value of Cij will be 1, whereas the value of Cij will be zero
for poorest or no correlation. A grey scale with black colour for Cij ¼ 1 and white colour for
Cij ¼ 0 is used. The intermediate shades indicate the correlation proportionately.
The relative magnitudes of the quantity Cij in Fig. 3 reflect the correlation between the original

assumed continuum modes without pre-conditioning with the finite element modes. Similarly,
Fig. 4 is plotted with Cijs calculated on the basis of the proposed reduced order model after
pre-conditioning and the finite element modes. Note the improvement in the correlation due to
the pre-conditioning and the application of Rayleigh’s variational principle.
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Fig. 3. MAC plot correlating the continuum assumed modes and the finite element modes. The dark blocks on the

diagonal indicate good correlation for the first few modes; yet the predicted frequencies based on these assumed modes

are very inaccurate.



ARTICLE IN PRESS

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

9

10

11

Mode number (FE)

M
od

e 
nu

m
be

r 
(r

ed
uc

ed
 m

od
el

 u
si

ng
 p

re
−c

on
di

tio
ni

ne
d 

m
od

es
)

Fig. 4. MAC plot representing correlation between the two sets of eigenvectors as calculated by the finite element and

the reduced order model. The dark blocks on the diagonal show excellent correlation up to the eighth mode.

Correlation for the ninth mode is not so good, whereas the tenth mode shows poor correlation.
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As a second method to compare the two eigenvectors [25], an eigenvector obtained from the
reduced order model is plotted against the corresponding eigenvectors from the full-scale model in
Fig. 5. If the points fall around the straight line passing through the origin at an orientation of
45�; a good correlation is indicated. The pair of two eigenvectors associated with the first, eighth,
ninth and the tenth mode are plotted in Fig. 5.
The plot shows an excellent correlation for the first mode pair. The correlation up to the eighth

mode is found to be very good. The ninth mode does not correlate so well. In the case of the tenth
mode, the approximate mode is poorly correlated with the eigenvector of the full-scale model. The
natural frequency predicted based on the approximate mode is about 7% higher than the
corresponding finite element value. Considering that only ten modes are used in the calculation,
and the correlation of the tenth assumed mode is poor with the corresponding actual mode, the
accuracy is surprisingly good. More number of modes are to be included in the basis for
improving the last mode.
The flop counts for the full-scale problem are compared with those of the reduced order

problem in Table 3. The full-scale model is of size 3444
 3444; whereas the continuum mode
based reduced order model is of size 10
 10: In view of this, only 10 modes were extracted while
solving the full-scale problem (3) using a sparse solver in MATLAB.
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Fig. 5. The straight line correlation plot for the first (top left), eighth (top right), ninth (bottom left) and the tenth

(bottom right) mode, respectively. Note the degradation in the correlation with the mode number.

Table 3

Comparison of the floating point operations for the full-scale problem (Eq. (3)) and the approximation using the pre-

conditioned continuum modes for three cases. Note that calculations of eigenvalues and eigenvectors for the reduced

model include all the stages starting from the generation of the pre-conditioned assumed modes up to the prediction of

the approximate frequencies and modes

Degrees-of-

Freedom

Floating point operations % of full scale

calculations

Generation of Calculations of Total

of K & M frequencies and

modes

calculations

1431 Reduced model 1:20
 105 6:74
 106 6:86
 106 11.39%

1431 Full model 1:20
 105 6:01
 107 6:03
 107 100%

3444 Reduced model 3:14
 105 2:08
 107 2:11
 107 9.58%

Example 1

(Section 4.1)

3444 Full model 3:14
 105 2:20
 108 2:20
 108 100%

4962 Reduced model 4:54
 105 3:37
 107 3:42
 106 7.49%

4962 Full model 4:54
 105 4:56
 108 4:57
 108 100%
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Two other models were generated by replacing the microstructure of the present example by
different cellular topologies. The degrees-of-freedom of the models were 1431 and 4962,
respectively. The basis continuum modes used in Example 1 were used for these models as the
external dimensions of the beam were the same. Therefore, the continuum modes need to be
generated only once for structures with the same overall dimensions but filled with various cellular
topologies. This is another advantage of the method leading to further computational savings in
such cases. However, flops required for the generation of the continuum modes were included in
the comparison for all the reduced order models.
Table 3 shows that the total flops required for the approximate method in the case of Example 1

is only 9.58% of that for the whole model. Break-up of flops indicates that the generation of full K
and M is much cheaper, it requires flops less than 1% when compared to the full model
calculations. Table 3 also indicates that the savings will be a lot more for structures with higher
degrees-of-freedom. Sometimes, a single mode calculation is very economical when we use the
assumed mode directly into Rayleigh’s quotient. We implemented this for the first mode and the
approximation matched the value obtained from the full-scale calculation within 0.000001%.
The first five modes of vibration of the structure shown in Fig. 1 are presented in Fig. 6. The

first three modes resemble those of a solid fixed-free beam. These three modes are primarily
bending modes. The fourth mode resembles the first axial mode in tension–compression for a
fixed-free elastic rod with axial degrees-of-freedom. The fifth mode is the fourth mode in the
bending series. The approximate method has predicted both the bending and the axial modes
accurately. The figures broadly justify the idea of using the continuum modes as the assumed
modes for cellular structures.

4.2. Example 2: L-beam

The second example of an L-beam is shown in Fig. 7. To generate the structure of this shape
filled with cellular material, we first created a large block of Voronoi cells. Then a structure of the
required L-shape was cut out of this rectangular block. Cell walls having very small length were
created during the model generation process. They were eliminated in a similar way as was done
for the cantilever beam. About 3% of the cell walls needed deleting from the mesh. The thickness
of the cell walls was chosen such that the minimum t=l ratio is 1=3: The distribution of length thus
generated indicates that only 7:4% elements have t=l ratios greater than 1=10 with 2:3% elements
have t=l ratio greater than 1=5: Therefore, about 92:6% of the cell walls have a t=l ratio less than
1=10: Hence, the shear effect can be neglected for most cell walls.
The beam is composed of approximately 600 cells. The geometric data for the L-beam are

presented in Table 4. The material properties are the same as those used for the cantilever beam.
The two arms of this L-beam have a L=D ratio about 8:5: The area fraction of the cellular solid
calculated from Eq. (30) is about 0:025: The continuum modes were calculated from a finite
element analysis of the L-shaped skeleton.
Table 5 shows a comparison of the natural frequencies as calculated from Eq. (3) with those

calculated on the basis of the pre-conditioned continuum modes. The agreement is excellent again,
with frequencies well within 1% up to the eighth mode. To assess the accuracy of the modes
obtained via the reduced order model, MAC matrix C is calculated to correlate the reduced order
modes and the finite element modes. The MAC plot for the L-beam is shown in Fig. 8. The figure
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Fig. 6. This figure shows the first five mode shapes of the cantilever beam shown in Fig. 1. The modes are plotted on the

basis of the finite element eigenvectors. The deflected shape of the first mode resembles the first flexural mode of a solid

fixed-free beam. The second, third and the fifth mode resemble the second, third and the fourth flexural mode of a

cantilever respectively. In contrast to the previous bending modes, the fourth mode is primarily an axial mode. This

mode resembles the first normal mode of a rod in axial vibration.
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indicates excellent correlation up to the eighth mode. The ninth and the tenth mode show poor
correlation as expected.
The size of the eigenvalue problem is reduced to 10
 10 from 3837
 3837 for this example.

The total floating point operations involved in the approximate method ð3:74
 107Þ is less than
10% of the operations required for the full model ð3:93
 108Þ: Therefore, substantial
computational saving is achieved for such a complex structure. Similar to the previous example,
only ten modes of the full model were obtained using a sparse solver.
The L-beam with identical arms will have degenerate modes of multiplicity two if the beams

have only bending degrees-of-freedom. This is because the corner will act as a pin joint with only
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Fig. 7. An L-beam composed of irregular cells. Note that the left-most and the bottom-most boundary are fixed such

that the displacements and rotations of all the nodes on these two boundaries are zero.

Table 4

Geometric data for the L-beam shown in Fig. 7

External length of each arm of the model 1250mm

Internal length of each arm of the model 1100mm

Overall depth perpendicular to the length direction D 150mm

Width perpendicular to the plane of paper Unity

Length of the cell wall material
P

i li 27171.2mm

Thickness of the cell walls t 0.33mm

Number of nodes 1279

Number of elements 1696

Total degrees-of-freedom 3837
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rotations allowed and the system will have two coincident natural frequencies. Each of these
corresponds to a beam fixed at one end and pinned at the other. When axial degrees-of-freedom
are allowed and when two arms are not identical (as in case of cellular arms) the degeneracy is
broken and we expect to obtain frequencies in doublets. Each pair originates from one set of
degenerate modes.
When we look at the frequencies of the cellular L-beam (see Table 5), we find a similar pattern

but the frequencies are not that close. For example, the ratio of the first and the second
frequencies is 1.54. The third and the fourth are the closest having a ratio equal to 1.08, whereas
the fifth and the sixth possess a ratio of 1.24. The originally degenerate modes have split quite far
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Fig. 8. MAC plot representing correlation between the modes calculated by the finite element and the approximate

method of the L-beam structure. The dark blocks on the diagonal show excellent correlation up to the eighth mode. The

ninth and the tenth modes show poor correlations.

Table 5

Comparison of the natural frequencies as calculated from the full model (Eq. (3)) and the approximation using the

pre-conditioned continuum modes for the L-beam shown in Fig. 7

Mode no. Natural frequency (Hz) Approximate frequency (Hz) Relative error (%)

1 4.25 4.25 �1:86
 10�4

2 6.54 6.54 �9:26
 10�4

3 11.87 11.88 �1:01
 10�2

4 12.85 12.85 �8:54
 10�3

5 14.75 14.76 �8:52
 10�3

6 18.24 18.25 �2:84
 10�2

7 25.41 25.44 �1:27
 10�1

8 30.14 30.22 �2:51
 10�1

9 39.55 41.18 �4:13
10 39.96 42.22 �5:66
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because the two arms of the L-beam possess different microstructure. As a result, their individual
natural frequencies are not the same.
Figs. 9–13 show the first five natural modes of the L-beam. The mode shapes as obtained from

the full-scale finite element analysis using Eq. (3) and those obtained from the reduced order
model almost coincide. Therefore, the mode shapes are displayed based on the eigenvectors
calculated for the full model. The overall mode shapes of the cellular L-beam are similar to the
corresponding modes of a solid L-beam.
The first two modes are overall bending modes (see Figs. 9 and 10). The third and the fourth

mode resemble each other (see Figs. 11 and 12). The horizontal arm is in the stretching–compres-
sion mode of vibration and the vertical arm is in flexural vibration in the case of the third mode.
The opposite happens for the fourth mode where the stretching–compression mode of vibration is
observed in the vertical arm and the flexural mode in the other. The fifth mode (see Fig. 13) is
primarily a bending mode with each arm corresponding to the second mode of vibration for a
fixed-pinned beam.
Cellular metals are often used as the core for sandwich constructions. To model such

composites, one could take two alternative routes. While the core can be modelled in a manner
similar to that used for illustrations in this paper, the external plates could be modelled using
additional elements (beams for planar models of foams; plates for three dimensional geometry). If
the external plates are not isotropic (as often is the case), the relevant anisotropy (usually
orthotropy) can be accounted for by appropriately choosing the elements that represent the face-
plates. An alternative to this approach could be to use analytical models that combine the face-
plate geometry and properties with those of the core—the core being represented by an effective
Fig. 9. The first mode of free vibration of the L-beam. All the displacements are plotted in exaggerated scale.
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Fig. 10. The second mode of vibration. This mode is also a flexural mode, similar to the first mode, but the phase of

vibration in the two limbs of the structure is opposite of the mode presented in Fig. 9.

Fig. 11. The third mode of vibration. The horizontal arm is in stretching-compression mode of vibration whereas the

vertical arm is in flexural vibration.
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Fig. 13. The fifth mode of vibration. It is primarily a bending mode with each arm corresponding to the second mode of

vibration for a fixed-pinned beam.

Fig. 12. The fourth mode of vibration. This mode is similar to the third mode, the difference being that the vertical arm

is in stretching–compression mode of vibration in this mode. The horizontal arm is in flexural mode of vibration.
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medium. In this case, the shear modulus of the core will be of great importance. We have not
undertaken the task of modelling such composites since the main objective of this paper is to
present an approximation method and not to model cellular composites.
5. Conclusions

A realistic representation of cellular structures requires modelling structures with a number of
cells. As a result, the eigenvalue problem associated with the free vibration is large, and hence,
computationally demanding. An approximate method was presented in this paper to overcome
this difficulty. The proposed method can be used for approximately calculating the first few
natural frequencies and the associated modes for the cellular structures with substantial
computational saving. The method is based on the assumption that macroscopically cellular
structures behave as a homogeneous continuum for low frequency dynamics. Assumed modes
based on the continuum modes were used as the basis in this method. The frequencies and the
mode shapes were predicted accurately using Rayleigh’s variational principle.
A direct use of the assumed modes for the approximation leads to large errors. It was shown to

be due to the presence of small high-frequency mode components in the assumed modes. A
method based on inverse power iterations was used to pre-condition the assumed modes
successfully. Further, a sensitivity analysis was performed to study the effect of an arbitrarily
chosen vector on Rayleigh’s approximation. We found that even small errors in the trial vector
can ruin the predictions unless care is taken in pre-conditioning the assumed continuum modes.
Two examples were given for planar structures to demonstrate the working of the method.

Structures made of irregular cells were analysed. A significant model-order reduction was
achieved by the proposed method without compromising the accuracy. The method may be
applicable for more complex structures.
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